Title	Booster Kicker Power Supply Upgrade							
Project Requestor	Ju Wang	Ju Wang						
Date	04/18/2008	04/18/2008						
Group Leader(s)	Ju Wang							
Machine or Sector	SERENO, NICHOLAS S.							
Manager								
Category	Obsolescence/Spares							
Content ID*	APS_XXXXXX	Rev.	ICMS_Revision	ICMS Document Date				

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	2010	Duration (Yr) 2	

Objectives:

Redesign the Booster kicker power supplies for better reliability and maintainability

Benefit:

The benefit of the project is reduced maintenance and increased reliability.

Risks	of	Project:	See	Note	2

1	N	'n	10
П	N	"	

Consequences of Not Doing Project: See Note ³

Without this project the Booster operation will continue to have long downtime when a fault happens at the kicker power supplies. The thyratron used in the kickers is obsolete now. A new design and new thyratron are required in the next few years before our spares are depleted.

Cost/Benefit Analysis: See Note 4

Failure of this project will keep the ASP operations at the risk of extended downtime. A typical major failure in a kicker power supply costs for than 8 hours of downtime. This project may reduce the repair time to 2 hours.

Description:

The APS booster ring has two kickers for beam injection and extraction. The kickers utilize high voltage to produce required magnetic field to bend the beam. Due to the nature of high voltage, the kickers, especially the extraction kicker, have had multiple insulation failures. Each failure has taken many hours to trouble shoot and repair. The thyratron used in the kickers is obsolete according to the manufacturer. The scope of this project includes identifying the thyratron replacement, identifying a new high voltage PFN cable with improved termination for better reliability and easy maintenance, and redesigning the power supply enclosure for easy maintenance and repair.

Funding Details

Cost: (\$K)

Use FY08 dollars.

Cost (\$k)

Year	AIP	Contingency
1	150	10%
2	150	10% 10%
3		
4		
5		
6		
7		
8		
9		

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1								0
2								0
3								0
4								0
5								0
6								0
7								0
8								0
9								0

Notes:

¹ **ICMS**. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. *Check Out* the previous version and *Check In* the new version. Be sure to complete the *Document Date* field on the check in screen.

² **Risk Assessment.** Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ **Consequence Assessment.** Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then ____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ **Cost Benefit Analysis.** Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ____ will also result in improved reliability of ____. (If no assessment is appropriate then enter NA.)